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Abstract 
How can behavioral scientists incorporate tools from machine learning (ML)? We propose that ML models can be used 
as upper bounds for the “explainable” variance in a given data set and thus serve as upper bounds for the potential 
power of a theory. We demonstrate this method in the domain of uncertainty. We ask over 600 individuals to make 6000 
choices with randomized parameters and compare standard economic models to ML models. In the domain of risk, a 
version of expected utility that allows for non-linear probability weighting (as in cumulative prospect theory) and 
individual-level parameters performs as well out-of-sample as ML techniques. By contrast, in the domain of ambiguity, 
two of the most widely studied models (a linear version of maximin preferences and second order expected utility) fail 
to compete with the ML methods. We open the “black boxes” of the ML methods and show that under risk our ML 
methods essentially “rediscover” expected utility with probability weighting. However, in the case of ambiguity we 
show that the form of ambiguity aversion implied by our ML models suggests that there is gain from theoretical work 
on a portable model of ambiguity aversion. Our results highlight ways in which behavioral scientists can incorporate 
ML techniques in their daily practice to gain genuinely new insights.  
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Decisions ranging from the mundane (e.g. choosing a restaurant) to the life-changing (e.g. 

choosing a job) include elements of uncertainty. For this reason, understanding how individuals 

evaluate uncertain prospects has been a key research area in the behavioral and social sciences for 

nearly two centuries (Bernoulli 1738, Kreps 1988).3 This has led to the creation of simple 

mathematical models that are characterized by parameters with intuitively understandable 

interpretations (e.g. the coefficient of risk aversion). There are many important recurring 

questions in any such research program: How good are these models? What commonly used 

assumptions are the most restrictive? What domains of uncertainty appear to be potentially 

fruitful targets for theorists? 

 

In this paper we compare techniques from the literature on machine learning (ML) with standard 

models from behavioral science. Our aim is to show how ML methods can help shed light on 

these questions.  We focus on two domains: risk (Camerer 1995, Kahneman & Tversky 2000, 

Kreps 1988, Savage 1954), where the probability of an uncertain outcome is perfectly known, and 

ambiguity (Knight 1921, Ellsberg 1961, Camerer & Weber 1992, Trautmann & Van De Kuilen 

2013), where decision-makers have partial, but not full, information to estimate the likelihood of 

an outcome. We recruit over 600 participants to indicate their willingness to pay for uncertain 

prospects whose features are randomly generated. As is common in the statistical learning 

literature (Friedman et al. 2009), we take a subset of these individuals’ decisions as an out-of-

sample “test set.” We calibrate on the remaining “training set” several economic models: 

expected utility (EU, von Neumann & Morgenstern 1945) and expected utility with non-linear 

probability weighting (EUP, Tversky & Kahneman 1992, Prelec 1998) in the case of risk and 

second-order expected utility (SOEU, Grant et al 2009) and maximin preferences (MM, Gilboa & 

Schmeidler 1989, Levy et al. 2010, Tymula et al. 2012) in the case of ambiguity on the remaining 

decisions. We then ask: how well do these models predict the held out test set decisions? 

 

This exercise allows us to tackle two issues.  First, it allows us to consider the relative 

explanatory power of the economic models. Note that because EUP nests EU but has an 

additional parameter, it will always fit (weakly) better in-sample. However, this may simply be 

over-fitting and the more complicated model may actually do worse out-of-sample. Thus 

comparing the models' out-of-sample fit allows us to ask whether the additional model 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This should not be confused with the discipline of statistics/decision science which is generally concerned with how 
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complexity adds value in terms of playing an important part in explaining variation in behavior in 

problems the model has not yet encountered. 

 

Of course, a statement that a model explains X% of the variance in a particular domain begs the 

question: is that good or bad? A model that predicts 10% of the variance in a very clean data set 

might be considered to have quite poor explanatory power. However, if there is substantial noise 

(either due to sampling error, poor data construction, or other factors), explaining 10% of the 

variance may actually be quite good. 

 

Thus, we are interested in explained variance as a proportion of explainable variance. To 

estimate explainable variance, we turn to tools from machine learning (ML). These tools are 

designed specifically for prediction and so we use their accuracy on the test set as an estimate of 

explainable variance in our experiments.4 As our ML benchmark model we use a cross-validated 

regularized regression. To allow linear regression to fit non-linear functions we take a basis 

expansion of all potential decision-relevant variables (probabilities and prizes for each outcome) 

as well as their interactions.  In our most powerful model we also include interactions of each 

decision-relevant variable with subject-level dummies. This gives us 55,000+ parameters to 

estimate, so to prevent overfitting we cross-validate and regularize the model (i.e. penalize the 

model for complexity). 

 

We find that the regularized regression outperforms expected utility models by a large margin 

under a representative agent assumption. We also find that attempting to fit representative agent 

models without allowing for individual-level heterogeneity makes the predictive power of any 

model quite poor.  However, when individual level parameters are allowed EUP does as well as 

the machine learning algorithms. We interpret this as a victory for probability weighting: this 

parameter increases out of sample prediction considerably, so it is an important feature of models 

of uncertain choice. We also consider this a victory for the economic models: a ~600 parameter 

model (2 per person x ~300 subjects) that is interpretable (i.e. the coefficient of risk aversion has 

an economic meaning outside of the model) is able to predict choices as well as the ML algorithm 

which has two orders of magnitude more parameters (~55,000) and is optimized purely for 

prediction and not interpretability.  Additionally, we show that the implied probability weighting 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4While relatively established in computer science and industry, data mining and machine learning approaches are only 
recently beginning to appear in social science. This is happening in experimental work (Fudenberg & Peysakhovich 
2014, Naecker 2015), finance (Moritz & Zimmerman 2014), time series analysis (Varian 2014), heterogenous treatment 
effect estimation (Athey & Imbens 2015) and political science (Grimmer 2015).	  
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curve generated by the best ML model is remarkably similar to the famous S-shaped weighting 

curve of our EUP model. 

 

On the other hand, in the domain of ambiguity we find that neither second order expected utility 

nor maximin preferences are able to predict individual out-of-sample choices as well as the ML 

models.  In an attempt to diagnose this failure, we show that the implied ambiguity penalty is 

convex in the amount of ambiguity, a feature that is not predicted by either model of ambiguity 

we consider in this paper.  We believe that this non-linearity is at least partially responsible for 

the predictive success of the ML models.  We interpret this as an opportunity for empirically-

minded theorists: these results, combined with the success of the EUP in the domain of risk, 

suggest there is ample room for the development of a simple model for the domain of ambiguity 

that predicts well and yet is relatively parsimonious.  

 

Choice Under Risk 

Experimental Design 

Our first experiment focuses on the domain of risk. Participants were recruited from Amazon 

Mechanical Turk and were compensated for their time with rates standard in the literature. All 

research was approved by the Institutional Review Board of Harvard University.  

All decisions made were hypothetical but participants were instructed to treat each decision as if 

it were real. While online experiments are much less controlled, faster and have smaller stakes 

than traditional lab sessions there is substantial evidence that standard behavioral economic 

effects replicate on Mechanical Turk (Peysakhovich & Rand 2015, Imas 2014, Fudenberg & 

Peysakhovich 2014, Naecker 2015), the pool is more representative (Paolacci & Chandler 2014) 

and that the size of stakes (even the use of pure hypotheticals) matters little (Amir & Rand 2012, 

Peysakhovich & Karmarkar 2015). There are known issues with Mechanical Turk samples: for 

example, participants are well experienced with experimental paradigms, much more so than 

student populations (Rand et al. 2014). Though we acknowledge this potential confound, in our 

context it is more likely a feature rather than a bug, because more “professional” participants are 

more likely to understand the task at hand and if anything are more likely to have stable, 

measurable preferences rather than noise due to confusion or unfamiliarity with the task. 

In our experiments participants were faced with choices about lotteries. Lotteries were described 

as being an urn containing 100 balls, some of which were red, some of which were blue and some 

of which were green. Each color had an associated monetary prize.  
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Participants were asked to enter their willingness to pay (WTP) to play each lottery. A lottery was 

played out as follows: A ball would be drawn randomly from the urn and the participant won the 

amount of money associated with the ball. Each lottery was presented as tables like the one below. 

 Red Blue Green 

# Balls 25 14 61 

Prize $10 $2 $0 

 

Participants were educated on how to read the tables as well as the rules of the game. Participants 

completed a comprehension quiz before starting the experiment; we remove data from individuals 

who answered this quiz incorrectly as well as those who do not finish the full experiment (Nrecruited 

= 350, Nsample = 315). See the online appendix for full experimental instructions. 

For each experiment we randomly generated large sets of potential lotteries by randomizing the 

features {pred, pblue, pgreen, moneyred, moneyblue} with moneygreen always being 0. Probabilities were 

generated uniformly at random (subject to the constraint that they sum to unity) and prizes were 

generated from the uniform distribution from $5 to $30. Participants entered their WTP for 10 

such randomly generated lotteries. 

We split the data into a randomly selected training set of 7 questions per individual and test set of 

3 questions per individual. Our core analysis involves using the training set to calibrate different 

models of individual decision-making and then use the test set to see how well these models can 

do at predicting choices they have not seen before. We use mean squared error as our metric.  

Models 

For choices under risk we consider expected utility as our baseline model. In particular, we 

choose exponential expected utility (sometimes called constant absolute risk aversion or CARA 

utility Mas-Collel et al. 1995). Formally we model that the utility of a lottery is given by the 

following: 

 

EU(L) = pred (moneyred)α + pblue (moneyblue)α 
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where α is the coefficient of risk aversion (with 1 being risk neutrality and 0 being complete risk 

aversion). Of course one then needs to transform this into a WTP for that lottery. We incorporate 

this into our model by assuming that the stated WTP of individuals for the lottery is their 

certainty equivalent, that is, the utility of this amount of money is equal to the utility of the lottery. 

Thus, we derive the equality 

 

WTP α =pred (moneyred)α + pblue (moneyblue)α. 

 

The EU model assumes that probabilities enter into utility linearly. However, there is substantial 

evidence that this is not the case: individuals appear to overweight small probabilities, behaving 

as if they are larger than they actually are, and underweight large probabilities (Kahneman & 

Tversky 1979, Tversky & Kahneman 1992). To incorporate this into a more flexible expected 

tility with probability weighting (EUP) model we use the functional form explored by Prelec 

(1998): 

 

EU(L) =f(pred)(moneyred)α + f(pblue)(moneyblue)α 

 

Where the probability weighting function f(p) is given by 

 

𝑓 𝑝 =   
𝑝𝛾

(𝑝𝛾 + (1 − 𝑝)𝛾)! 𝛾
 

 

This gives us a second parameter, γ, which characterizes an individual’s probability weighting 

function.  Note that  γ=1 returns the standard linear weighting. 

 

We consider two classes of models: in one, we fit a single parameter (or pair of parameters in the 

case of EUP) for the full population of individuals (i.e. a representative agent model). In the more 

complex class of models, we allow for individual-level risk (and probability weighting) 

parameters. Going from a representative agent to heterogeneous agents increases the model’s 

number of parameters by an order of 300, so we view it as important to see the improvement in 

predictive accuracy from relaxing the representative agent assumption. In all our estimates we 

allow risk aversion and probability weighting parameters to range between 0 and 1. Thus we 

require individuals to be risk averse and do not allow them to overweight probabilities in a 
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“strange” manner. Relaxing this constraint to allow a range of [0,2] for both values only 

decreases out of sample fit. 

 

Before we turn to showing the predictive power of economic models, we discuss our benchmark 

ML models. 

 

Machine Learning Methods 

As our benchmark we use regularized regression. We give a brief overview of the procedure here 

and direct the reader to more specialized texts (eg. Freidman et al. 2009) for more discussion on 

the derivation and Bayesian interpretation of the regularized regression technique, as well as a 

more in-depth discussion of cross-validation and the bias-variance tradeoff.  

 

The regularized regression optimization problem is similar to the one used in OLS estimation, 

with the exception of an additional penalty for model complexity. This means that we get a model 

whose coefficients are biased (ie. E(B i) is not the true value B); however, the error that this bias 

introduces is, theoretically and in practice, offset by the fact that the regularized model does not 

“chase noise” and overfit in sample, and so we get a lower mean-squared error overall. Recall that 

we are using 7 (randomly selected) decisions from each individual to fit the model and the 3 other 

decisions (never before seen by the model) to estimate its performance. 

 

The formal objective function is as follows, with ||.|| referring to standard norm notation, y 

referring to a set of outcomes, X being a set of matrix of features (one row for each outcome) and 

B being a vector of regression coefficients: 

 

½ ||y – XB||2 + λ ||B||p 

 

The idea behind regularized regression is as follows (see Friedman et al. 2009 for a more 

thorough introduction as well as the mathematical derivation): we run a regression that includes a 

very large number of features that can be used for predicting the outcome. For this paper each 

row in the data set is a single decision made by an individual, the feature set is the vector given 

by pred, pblue, pgreen, moneyred, moneyblue as well as quadratic terms for each of these (thus starting 

with 8 features). In addition we include all up to three-way interactions between these features 
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(resulting in 175 features).5 This gives us our representative agent model. We use this term 

because the fact that a particular data point comes from one or another individual is not 

incorporated into the model at this point. To build the individual level version we interact this 

feature set with a full set of dummies for each individual (thus giving us an ~55,000 coefficients 

to be estimated).6  

 

We trade off prediction accuracy (in-sample squared residuals) with a penalty. The second term 

in the above objective function is moderated by the penalty term λ, which is used to prevent 

overfitting in-sample. A higher λ means that the resulting coefficients will be “shrunk” towards 0 

but will also mean that the model will not be as sensitive to the data and thus should be less prone 

to overfitting and doing poorly in out-of-sample tests. Sending λ to 0 returns the OLS estimates, 

while setting λ to infinity returns a constant model (since we do not penalize the intercept term). 

 

Note that because the penalty is applied to the coefficients, re-scaling the features can change the 

penalty. The package we use (glmnet in R; Friedman et al. 2009) standardizes all features (by 

transforming them to mean 0, variance 1) when it does the fitting and then unscales them to get 

the coefficients for the features in their original scales.  

 

Penalizing the coefficient sizes gives us another important advantage: it would be impossible to 

use standard OLS estimation in this case as the number of columns (>55,000) exceeds our 

number of rows (7 decisions x ~300 subjects = ~2100 rows); however, because of the added 

penalty the minimization problem is well specified and easily solvable. 

 

There is also a choice of p in the second term of the objective. We consider the choice of p=1 (a 

linear penalty on coefficient size, commonly called lasso) or p=2 (a penalty on the square of each 

coefficient, commonly called ridge regression). Lasso is a way of introducing sparsity into the 

model: given a linear penalty, coefficients that add less than a certain amount of predictive power 

are essentially rounded down to 0. This can be used either because we really believe the true 

model is sparse (i.e. there are many potential features but only a small number of them actually 

affect the outcome) or because we want a simpler, more interpretable output of our machine 

learning procedure (perhaps at the cost of predictive power).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 There are many potential ways to go from a linear model to represent a more complex set of functional forms. We 
choose the polynomial basis expansion because it is the simplest to implement.  
6 Note that this looks like a large number of parameters, but in fact many entries of our model matrix are 0. This allows 
us to use sparse matrix methods to efficiently estimate our regressions.	  
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By contrast, p=2 gives us ridge regression which shrinks all estimated coefficients towards 0, but 

does not provide the sparsification of the lasso. There is a deep connection between both types of 

penalized regression and Bayesian modeling – in essence it amounts to putting a normal prior (in 

the case of ridge) or a Laplace prior (in the case of lasso) on the regression coefficients with 

lambda playing the role of the prior variance) but this is beyond this basic discussion.7 We 

estimate both models on our data but we expect that the ridge should outperform the lasso as 

there is little reason to expect sparsity in our set of basis expansions. 

 

Note that this means λ is a free parameter. Intuitively, one can think of λ as a shadow price for 

buying “model complexity,” where higher λ pushes us towards a simpler model while lower λ 

allows us freedom to build more complex functions. How do we then set the optimal price for 

coefficient? We choose it by cross-validation: we split our training set into sub-sets called folds.  

 

 
Figure 1: We test our models by holding out 3 decisions per individuals calibrating parameter values on the remaining 

data and asking the models to predict the held out WTP (left panel). To set regularization parameters for our ML 

models we use cross-validation: in the training set we split the data into 7 folds and for each fold k we compare the 

mean-squared errors of models with varying levels of regularization trained on the other folds (right panel shows a 

single iteration of this procedure). 

 

We split the data into 7 folds, each including 1 decision per individual. We then train the model 

for varying levels of Lambda on 6 folds and predict out to the last one (in essence, we simulate a 

test-train procedure). We repeat this for each possible “hold out” fold, thus calculating out-of-

sample error for each fold. We choose the λ that gives us the smaller average error across these 7 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 More complex priors can be expressed by changing feature scaling. For example, if we scale one of the inputs to be 
mean 0 variance 1/100 then adding coefficient (in original units) to this input becomes much “cheaper.” This 
corresponds to placing a prior that has more weight away from 0 on that particular input. We do not employ this 
method here.  
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folds. We then put the training set back together and use this chosen lambda as our final penalty 

parameter. 

 

While this may look complex, this procedure is simply a way to choose a model from a relatively 

complicated model space while attempting to combat overfitting in-sample that will lead to bad 

out-of-sample predictions. 

 

A Comparison of Model Comparison Methods 

Model comparison is an important part of much existing experimental and behavioral economics 

literature. In this literature most model comparisons are done via some form of null hypothesis 

testing. That is, researchers fit multiple, usually nested, models to the same data and then perform 

a likelihood ratio test to see whether the more complicated one outperforms the simple one.  

 

One well-known example of this type of analysis is Charness and Rabin (2002). In their 

experiments, individuals make a large number of choices involving cooperation (ie. trading off 

benefits for one self vs. benefits for others). The authors then fit a series of logit models on a 

variety of parameters (eg. whether player A or player B has higher payoffs,) and perform in-

sample statistical tests to determine which models are best (and thus which parameters seem to be 

important in individual choice functions).8 More closely related to our work Gonzalez and Wu 

(1999) ask whether there is non-linear curvature in the probability weighting function by fitting 

structural models of choice and performing a hypothesis test whether a particular parameter is 

different from zero. 

 

In-sample nested model fits are a very useful method; however, we argue they do not capture the 

full picture. In particular, we believe that in general researchers have good intuition about the 

parameters that are put into models. So, parameters that are added to a model are generally 

expected to improve true model fit, and with large enough sample size these complex models will 

generally be a better model in the sense of passing the likelihood ratio test.  Out of sample 

predictive power, on the other hand, helps us answer not just “is the more complex model better?” 

but more the more important question of “by how much?”.  

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 More recently Epstein et al. (2016) use the methodology proposed in this paper to perform a related evaluation of 
cooperation preferences and Kleinberg et. al. (2015) independently use a machine learning to estimate “explainable 
variance” in a human random number generation task. 
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Some work in experimental economics has focused on predictive power of models. For example, 

Roth and Erev (1995) investigate how well learning models with zero parameters perform at 

predicting behavior in zero-sum games.9 Similarly, in several recent experimental economics 

competitions (Erev et al 2010 and Erev et al 2015) partial data sets of choices in experimental 

settings were released and individuals were invited to submit models which would be evaluated 

on their predictive accuracy in yet unseen data from the same task.  

 

Such pure prediction competitions form a horserace between models but they do not tell us 

anything about the “headroom” that we have in a particular domain. This is the final piece that we 

add by utilizing the ML comparison. We note that this is a formalization of another commonly 

performed exercise where model fits (or model predictions) are simply plotted against actual data 

(in or out of sample) and judged using an “ocular least squares” algorithm (ie. simply by 

evaluating the plot). Using ML as the baseline can be thought of as a more formal version of this 

procedure that can be used in much more complex data sets and can yield a quantitative rather 

than qualitative evaluation. 

 

Results 

Figure 2 shows our results for risky prospects.  For each approach described previously, we plot 

the mean squared error on both the test set and the training set.  We find that the regularized 

regression outperforms EU by a large margin. We also find that assuming a representative agent 

(i.e. not allowing for individual-level heterogeneity) greatly compromises the predictive power of 

all models.    

 

However, individual-level EUP performs as well as the machine learning algorithms. We 

interpret this as a victory for probability weighting: this parameter increases out of sample 

prediction considerably, so it is an important feature of models of uncertain choice. We also 

consider this a victory for the economic models more generally: a model with 2 parameters per 

person that is interpretable (i.e. the coefficient of risk aversion has an economic meaning outside 

of the model) is able to predict choices as well as the ML algorithm which has an order of 

magnitude more parameters and is optimized purely for prediction and not interpretability. 

Finally, we find that making a sparsity assumption (ie. using the Lasso) decreases predictive 

accuracy substantially: this means that in our basis expansion there are many terms which have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Similar ideas but applied to other types of games are explored in Camerer (2003) and Fudenberg & Peysakhovich 
(2015). 
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small coefficients but together contribute substantially to the predictive accuracy of the model; 

forcing those terms to 0, as the L1 penalty does, decreases predictive ability by a large factor. 

 

 
Figure 2: ML methods outperform standard expected utility, but not expected utility with probability weighting. The 

representative agent assumption, where all individuals are assumed to have the same utility function, is highly 

restrictive.  

 

Opening the black box 

The ML methods we have used appear to have the same predictive power as the EUP model. 

However, it is not clear what functional form the ridge regression has actually learned. There are 

two hypotheses: the first is that the ML simply “re-discovers” EUP; the second is that the ML 

learns some function which is very different from EUP but yields the same prediction error 

(because it does better on certain regions of the parameter space and worse on others).  

 

To explore this question we contrast the predicted behavior from the ridge model and the EUP 

model. We focus on lotteries of the form “win $X with probability p” and predict the WTP for 

such a lottery using the EUP models and the ridge model. For simplicity we focus on the 

representative agent model.  
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Figure 3: Differences in predicted willingness to pay from between the EUP and Ridge models.  Each cell represents a 

lottery pays the given payoff with the corresponding probability (otherwise 0).   

 

Figure 3 shows the difference between the representative agent EUP-predicted WTP and the 

Ridge-predicted WTP in the simple binary lottery. For most values of p and X the predictions are 

within $1 of each other (the median gap across all cells is -$0.86). However, we do see large 

differences when the probability p is very close to 1.  

 

To investigate this difference further we consider the following exercise.10 We take the fitted 

model and set the variables moneyblue =0, pblue=0, moneyred =1. We vary the variable pred between 0 

and 1 in increments of .01 and look at the model outputs. Note that this exactly traces out the 

probability weighting curve implied by the learned model. We repeat this exercise symmetrically 

for blue and average the implied curves in Figure 4. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 We get very similar results if we perform this analysis on the individual level fits, however because they are fit with 
relatively few data points per person they are quite noisy. Thus we show the representative agent for clarity. 
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Figure 4: Implied probability weighting curves for the EUP model (solid line) and the Ridge model.   

 

We see that the ML models do appear to learn a probability weighting function that is quite 

similar to the probability weighting function implied by the EUP model with the curvature 

parameter of the representative agents. One noticeable difference is in the region [.9, 1], which is 

precisely where the EUP and ML model disagree on behavioral predictions above.  

 

This disagreement happens because there is no hard constraint on the ML model to make the 

probability weighting function return 1 at p=1. This fact, combined with the way that the 

experimental conditions were generated (there is relatively little data in that interval because 

experiments randomize the probabilities uniformly), the chosen feature space (using a second 

order basis expansion), and the regularization (penalizing coefficient size and thus forcing 

coefficients that are not the intercept closer to 0) causes the main discrepancy.  
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A note on our methodology above is that we average both utility and probability curves for the 

two colors because for the purposes of an economic model whether the colors are red or blue 

should not matter. However, this assumption is not built into our ridge regression and so the 

model could, in principle, learn to treat the two colors completely differently. An important line 

of research in machine learning looks at implementing certain invariants (eg. that a cat which is 

shifted 2 pixels to the left in an image is the same cat) using what is generically called parameter 

sharing. We do not do this here, as it is beyond the scope of the paper, though we point out for 

future research that parameter sharing assumptions are an attractive way to impose certain 

economic axioms on machine learning models. 

 

Choice Under Ambiguity 

Experimental Design 

Our second experiment focuses on the domain of ambiguity. Participants were again recruited 

from Amazon Mechanical Turk and were compensated for their time. All decisions made were 

hypothetical but participants were instructed to treat each decision as if it were real.  

Participants again made choices about lotteries. Participants in this experiment did not participate 

in the risk experiment reported above. This experiment used the procedure introduced in Levy et 

al. (2010) and further updated in Peysakhovich & Karmarkar (2015). Lotteries were described as 

being an urn containing 100 balls, some of which were red and some of which were blue. 

However, unlike in the risk experiment, participants did not know the full composition of the urn. 

Rather, to induce ambiguity participants lacked all the necessary information to estimate the 

probability of an outcome.  

Participants received the following partial information about each lottery: they knew that there 

were 100 balls total in the urn. Each ball was colored red or blue. Participants knew that there 

were at least X red balls and at least Y blue balls in the urn. However, they did not know the 

colors of the remaining 100-X-Y balls.  

Participants were asked to enter their willingness to pay (WTP) to play each lottery. A lottery was 

played out as follows: A ball would be drawn randomly from the urn and the participant won the 

amount of money associated with the ball.  Each lottery was presented as tables like the one 

below: 
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 Red Blue Unknown 

# Balls At least 20 At least 31 49 

Prize $10 $0 ?? 

 

Participants were educated on how to read the tables as well as the rules of the game. Participants 

completed a comprehension quiz before starting the experiment; as in the risk experiment, we 

remove data from individuals who answered the comprehension quiz incorrectly as well as those 

who do not finish the full experiment (Nrecruited = 350, Nsample = 287). See the online appendix for 

full experimental instructions. 

For each experiment we randomly generated a large set of potential lotteries by randomizing the 

features {Xred, Yblue, prize}. Probabilities were generated uniformly at random and prizes were 

generated from the uniform distribution from $5 to $30. Participants entered their WTP for each 

of 10 such randomly generated lotteries. 

Models 

We focus on two simple models that have been developed in the ambiguity literature and used in 

experimental work. The first is a linear version of the maximin model of Gilboa & Schmeidler 

(1989) that has been used in experimental work such as Peysakhovich & Karmarkar (2015), 

Tymula et al. (2012), Levy et al. (2010). We follow the exposition in Peysakhovich & Karmarkar 

(2015) to introduce this model. 

 

Consider a decision-maker facing an ambiguous lottery with a single prize z. The mathematical 

primitives of a lottery are: a set of states of the world, say the interval [0,1], and a winning 

function g:[0,1] to [0,1]. Given a state of the world w, the probability of winning the prize z is 

given by g(w). The states are ordered such that g is increasing; that is, higher states always mean 

a (weakly) higher probability of winning the prize. In our case the set of states of the world is 

given by {0,.01,.02, .03,.…,1} which is the set of all possible bag compositions.  For example, 

w=.49 corresponds to the urn having 49 red balls and 51 blue ones,. The winning function here is 

just g(w)=w.. 
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The decision-maker does not know w but receives partial knowledge about what it could be: he 

can conclusively rule out that the state is less than some X and can also rule out that it is greater 

than Y.  

 

Given this information, the decision-maker builds a probability distribution p(X,Y) on the set of 

states. We assume that this is done in a Bayesian manner: the decision-maker begins with a full-

support prior 𝑝! on the state space and updates it in accordance with Bayes rule given the 

knowledge (X,Y) he has. We assume that the prior is uniform on the state space, thus updating 

with (X,Y) gives a posterior that is uniform on the interval [X, 100-Y]. 

 

Let P(X,Y) be the subjective probability of winning the prize given (X,Y):  

 

P(X,Y) = ∫g(w)dp(X,Y) 

 

We assume that p is well-behaved so this integral is well defined. The decision maker has the 

utility function:  

 

U(X,Y, z) = (1- γ (X+Y)) P(X,Y) z α 

 

where γ  governs the strength of ambiguity aversion. Note that if γ is zero, the DM acts as an EU 

agent. Note also in the case of uncertain decisions with no ambiguity (that is, when X + Y = 1) the 

DM also behaves as an EU maximizer. However, when X+Y is less than 1 the DM “downweights” 

the probability P(X,Y) by γ  and so behaves in an ambiguity averse manner. Here z α is just a 

standard CARA utility function as in the case of risk. 

 

Another popular way to model ambiguity is to assume that individuals treat “objective” 

uncertainty (e.g. coin flips) differently from “subjective” uncertainty (Segal 1987, Gul & 

Pesendorfer 2014, Maccheroni et al. 2006, Klibanoff et al. 2005, Abdellaoui et al. 2011). We 

focus on one model of this type, second order expected utility (SOEU, Grant et al. 2009).  We 

select SOEU from the long list of potential models because existing work has demonstrated a 

relationship between non-linear compounding of multi-stage risky only lotteries and ambiguity 

aversion (Halevy 2007, Abdellaoui et al. forthcoming). 
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We keep the same setup of states of the world/winning functions/prizes/information as in the 

exposition above. Except now, we write the utility function as 

 

U(X,Y,z) = ∫ (g(w) z α) γ dp(X,Y) 

 

Note that setting γ =1 gives us back standard expected utility because we simply get P(X,Y)*z α . 

Note also that if p(X,Y) is degenerate (ie. there is no subjective uncertainty about states of the 

world) then we again get back EU. However, when p(X,Y) is not a point mass then the resulting 

expected utilities are hit by γ . Thus, an “objective” lottery which is known to have 50-50 odds is 

preferred to the compound lottery with the average same probability of winning but which 

includes subjective uncertainty (for example: having odds that could be uniformly drawn from 0-

100 to 100-0 but are on average 50-50). This is another way to represent uncertainty aversion that 

is related to, but not exactly the same as, the maximin model above.11  

 

Results 

Unlike in the risk domain we find that neither second order expected utility nor maximin 

preferences are able to predict individual out-of-sample choices as well as ridge regression 

(Figure 5). Interestingly, here we find that the individual-level Lasso outperforms the ridge 

suggesting that given the parameter space we use there is indeed some sparsity (ie. some values 

that are exactly 0). 

 

We interpret this as an opportunity for experimentally-minded theorists: our results suggest there 

is ample room for the development of a simple model for the domain of ambiguity that predicts 

well and yet is relatively parsimonious. 

 

Our paper also provides a natural complement to L’Haridon and Placido (2008), Baillon et al. 

(2011), and Machina (2009) – those papers provide a thought experiment (and mathematical 

derivations) that existing popular ambiguity models may be “missing something.” We agree this 

is a powerful piece of evidence that more theory is needed, but we also follow the maxim that ‘all 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 We also point out that this model is much more complicated from a computational standpoint. To compute the utility 
estimate of an ambiguous lottery one must take a numerical integral with respect to the measure p(X,Y). In our discrete 
case with 100 states of the world this is not that difficult, however in other situations where the state space is more 
complicated this model become prohibitive to fit because each iteration of an optimization routine will require the 
computation of this numerical integral. Computational complexity is not something that decision theorists have 
generally focused on but in applied settings, especially when individual-level models are nested into larger ones such as 
markets, tractability and efficiency can become important targets. 
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models are wrong’. Thus, our question is whether these models can still fit behavior well across a 

larger set of ambiguous contexts even if they are literally wrong on a subset of them and our 

results show that, indeed, there is room for improvement. 

 

Opening the Black Box 

Just as with the risk models we now turn to opening the black box of the models trained on 

ambiguous choices. As above, we consider the following exercise: we compare the willingness to 

pay for multiple kinds of ambiguous gambles. We plot the functions implied by the ML and 

attempt to glean information from them. 

 

Peysakhovich and Karmarkar (2015) show that behavioral responses to new information in 

ambiguous situations should be asymmetric in a particular way: favorable information (ie. 

information that shifts an individual’s beliefs towards a “good” outcome) should be weighted 

more heavily than unfavorable information (ie. information that shifts an individual’s beliefs 

towards a “bad” outcome).  

 

  

 
Figure 5: ML methods outperform economic models in choice under ambiguity. This suggests that building a “plug 

and play” ambiguity aversion model is a fruitful direction for both theorists and experimentalists alike. 
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This is because of a key facet of ambiguity, individuals care both about the objective probability 

of winning a gamble and the certainty with which they can estimate that probability. Favorable 

information increases the subjective probability of a good outcome and decreases the certainty 

(both positive effects on willingness to pay) while unfavorable information decreases subjective 

probability of “winning” but also decreases uncertainty (thus these two forces push in opposite 

directions).  

 

We ask whether our ML model (again, the representative agent ridge regression) displays this 

basic bias. Recall that we parametrize our ambiguous gambles as “there are at least X winning 

balls and at least Y losing balls in the urn.” We can think of X as the amount of favorable 

information and Y as the amount of unfavorable information. We consider the ML predicted 

willingness to pay in favorable situations, which we define as those where X = 3Y, symmetric 

situations where X=Y, and unfavorable situations where Y=3X. We vary the proportion of 

residual ambiguity, that is (100-X+Y)/100 in all these situations.  

 

We see in Figure 6 that indeed our ML learns the broad patterns that we would expect: even for 

symmetric information the amount of ambiguity strongly affects willingness to pay and there are 

asymmetries between the effects of favorable and unfavorable information (to see this, compare 

the distance of the unfavorable curve from the symmetric curve to the distance of the favorable 

curve from the symmetric curve).  

 

Note that the linear maximin model implies a similar set of curves, but with straight lines rather 

than convex curves. To us this suggests that the model is on the right track but needs a similar 

“tuning” to what the EUP model provides on top of the EU model. We leave this exercise for 

future research studies. 
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Figure 6: Implied ambiguity penalty curves from predicted by the ridge model. 

 

Conclusion 

We have argued that predictive power out-of-sample is an important quality for models to possess. 

We find that in the domain of risk, simple EU models with probability weighting do as well at 

predicting as machine learning algorithms. However, in the domain of ambiguity, ML 

outperforms economic models. This suggests that there is room for a simple “plug and play” 

model of ambiguity aversion that is more reflective of the “true” form of ambiguity preferences 

than the status quo models. 

  

Along the way, we have leveraged several techniques from machine learning, including a focus 

on out-of-sample prediction, regularization (ie. penalizing models for complexity), and high 

dimensional regression. However, our standard economic models still relied on maximum 
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like regularization, cross validation and variable selection with more complex economic models 

beyond simple regressions.  

 

Though ML methods tied with the economic models in the dimension of risk, we consider this a 

victory for the economic models. There is evidence that preferences about risk, time and social 

decisions measured by simple economic games predict field behaviors such as insurance (Bryan 

2013), cooperation (Peysakhovich et al. 2014), and taking care of one’s health (Chabris et al. 

2008). Thus, models that predict well and generalize outside of the domain at hand are often more 

valuable than those which are simply good predictors within a particular domain. We hypothesize 

that a model which better captures the structural form of preferences (in our case, a better simple 

model of ambiguity aversion) may also predict better in field behaviors as well as work better 

when plugged into larger models (eg. those of markets).  

 

We worked with EU, EUP, and the two ambiguity aversion models because they are simple and 

have already been deployed in the literature (e.g. Levy et al. 2010, Tymula et al. 2012). We 

acknowledge that there are many other model choices. In the case of ambiguity, these included 

(but are not limited to) rank-dependent utility (Segal 1987), expected uncertain utility theory (Gul 

& Pesendorfer 2014), variational preferences (Maccheroni et al. 2006), smooth ambiguity models 

(Klibanoff et al. 2005) and others. At their core, each of these models captures ambiguity 

aversion by postulating that second-order uncertainty is somehow aversive. Expanding our 

analyses to portable parameterized versions of these models is an interesting outlet for future 

work. It would be especially interesting to see whether certain models are more successful on 

some regions of the parameter space than others, this would provide hints as to what a “final” 

portable ambiguity aversion model may look like.	  

 

Our results highlight the usefulness of machine learning tools for behavioral and social scientists 

as a benchmark for formal models as well as the importance of looking out-of-sample for 

evaluating model quality. In general, we argue that machine learning tools combined with the 

volume of data that can be gathered from the online laboratory have the potential to improve 

behavioral science by leaps and bounds. 
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ONLINE APPENDIX 
 
Appendix A: Screenshots of experiment 

 
Figure A.1 Instructions for subjects in risk version of experiment. 
 

 
Figure A.2 Understanding quiz for subjects in risk version of experiment. 
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Figure A.3  Representative decision screen for subjects in risk version of experiment. 
 
 

 
Figure A.4 Instructions for subjects in ambiguity version of experiment. 
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Figure A.5 Understanding quiz for subjects in ambiguity version of experiment. 
 
 

 
Figure A.6 Representative decision screen for subjects in ambiguity version of experiment. 
 
 


