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Borrowing from Psychology
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Psychology and Economics

I Behavioral and experimental economics owe much to the psychology
literature

I Many of the foundation papers we will read in each section are from
major branches of psychology:

I social psychology
I cognitive psychology
I judgement and decision-making

I Many groundbreaking researchers in behavioral economics were
trained as psychologists:

I Amos Tversky, PhD in Cognitive Psychology
I Daniel Kahneman, PhD in Psychology
I Dan Arielly, PhD in Cognitive Psychology
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Discussion Questions

I What ideas and concepts are shared between psychology and
economics? Do they have the same names or different?

I What methods to the two areas share? What methods are distinct?

I How is theory in economics different than theory in psychology?
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Two Systems Model

I System 1: fast, associative
I Make connections from similarity
I Processing occurs automatically
I Good at: pattern completion, emotional reactions, repetitive tasks

I System 2: slow, deliberative
I Uses symbols and rules
I Processing occurs with conscious awareness
I Good at one-shot learning, formal logic, educational knowledge,

abstract theories

I May interact alternatively or simultaneously

I Moderated by mood, energy level, difficulty of problem, type of
judgement
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Probability
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Why Do We Need Probability?

1. Social scientists are interested in making predictions about future
behavior

I Sometimes the best prediction we can give is a likelihood of a certain
event of interest happening

2. We need a benchmark to talk about rationality of behavior
I Probability judgement: Process of assigning a number to an event that

represents one’s strength of belief that that event will occur
I The rules of probability come from very general assumptions but still

give powerful restrictions on how probability judgement should behave
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Probability Basics

I Let Ω be the space of all possible outcomes
I Eg if we are rolling a single die, Ω = {1, 2, 3, 4, 5, 6}

I A collection of one or more outcomes is an event, eg E ∈ Ω
I The event“roll a 3 or greater” is E = {3, 4, 5, 6}

I A probability function is a function P that assigns numbers between 0
and 1 (inclusive) to every possible event in Ω

I P({1}) = 1
6

I P({3, 4, 5, 6}) = 2
3
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Axioms of Probability

I An axiom is a mathematical rule that is assumed to be true
I We have just two axioms in probability theory:

1. P(Ω) = 1
I You can think of this as “something is guaranteed to happen”
I Eg P({1, 2, 3, 4, 5, 6}) = 1 in dice example

2. P(A or B) = P(A) + P(B) for any two mutually exclusive events A
and B

I Called the addition axiom
I Eg P({1}) + P({3, 4, 5, 6}) = 1

6
+ 2

3
= 5

6

I These rules may not uniquely determine the probability function for a
given context

I But they do still allow us to make testable predictions about what a
(possibly subjective) probability function should look like
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Where Do These Probabilities Come From?

I Frequentist perspective
I Probabilities represent long run averages
I Eg, dice: P(4) = 1

6 because if I roll a die a very large number of times,
1
6 of the time I will roll a 4

I Counting perspective
I Break event space into small enough pieces that they are be equally

likely to happen
I Probabilities of more complex events can then be built by addition rule,

since pieces are mut
I Example: what is the probability of flipping two heads in a row?

I Break down into 4 equally likely events: HH,HT ,TH,TT
I Only 1 of these has two heads, so P(HH) = 1

4
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Conditional Probabilities

I We can define conditional probability P(A|B) = P(A and B)
P(B)

I This is the probability of A occurring given that we know B has
occurred.

I Example: P(winter) = 1
4 but P(winter | snowed last weekend) > 1

4

I We say two events A and B are independent if P(A|B) = P(A)
I Dice example: Probability of rolling a six is independent of what you

rolled previously

I Multiplication rule: For any two events A and B then
P(A and B) = P(A|B)P(B)

I Comes from rearranging definition of conditional probability
I Note that if A and B are independent, P(A and B) = P(A)P(B)
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Bayes’ Rule: Intuition

I Suppose you have the following information:
I The baseline breast cancer rate in women is 10%
I If a patient has breast caner, a mammogram will return positive with

90% probability
I If a patient does not have breast cancer, a mammogram will return

positive with 20% probability

I Question: What is the probability that a patient has cancer given that
you see a positive mammogram result?

I Consider 100 women, all of whom we test for breast cancer
I 10 will have cancer (from the baseline rate)

I Of these, 9 will return positive, 1 will return negative

I 90 will not have cancer
I Of these 72 (90× 0.8) will return negative, 18 will return positive

I So among the positive tests, only 9
27 = 1

3 are true positives for cancer
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Bayes’ Rule: Formalization

I Suppose we are considering two events A1 and B
I From the definition of conditional probability, we have

I P(A1|B) = P(A1 and B)
P(B)

I P(B|A1) = P(B and A1)
P(A1)

= P(A1 and B)
P(A1)

I Substituting one into the other:

P(A1|B) =
P(B|A1)P(A1)

P(B)

I This is the most basic statement of Bayes’ rule
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Bayes’ Rule: Alternate Formulations

I That P(B) on the bottom is not very useful

I Suppose A2 is the even that A1 does not happen, ie A1 + A2 = Ω

I Then

P(B) = P(B and A1) + P(B and A2)

= P(B|A1)P(A1) + P(B|A2)P(A2)

I This give us a more useful version of Bayes’ rule:

P(A1|B) =
P(B|A1)P(A1)

P(B|A1)P(A1) + P(B|A2)P(A2)

I Or more generally:

P(A1|B) =
P(B|A1)P(A1)

ΣiP(B|Ai )P(Ai )
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Experimental Design
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Why Do We Need Experiments?

I Suppose we observe the following pattern in observational data:

I Can we conclude that cigarette lighters cause cancer?

I No, correlation is not causation
I More likely that there is a third variable (smoking) that causes the

other two
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Experiments Give Us Control

I Experiments allow the researcher to control all the variables (or at
least control them more than in observational data)

I Experiments also the researcher to determine causality using random
assignment

I For example, if we randomly gave some people more cigarette lighters
to have around the house, we would probably see that they have no
causal relationship with cancer risk
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Building Blocks

I Every experiment needs some participants, also know as subjects or
decision-makers

I The most basic unit in an experiment is a task or choice
I For example, deciding whether or not to buy a food item

I A treatment is a series of one or more similar tasks
I For example, choosing whether or not to buy many food items, one at

a time

I An experiment consists of one or more treatments
I For example, could have one treatment where all food items are 25

cents, and another where all food items are at 75 cents
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Treatment Variables

I Many experiment consist on only one treament
I But many others have more than one treatment

I The parts that differ between the treatments are called treatment
variables

I A common experimental design is to have two treatment variables
that can each take on two levels

I This is called a 2-by-2 design
I Example:

I We are interested in responses to requests for donations to the local
animal shelter

I Vary whether picture of a dog is included, and vary whether a specific
amount of money is asked for

Amount Specified Amount Not Specified
Photo Treatment A Treatment B

No Photo Treatment C Treatment D
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Within- vs Between-Subjects Design

I In a between-subjects design, each subject completes only one
treatment

I In a within-subjects design, each subject completes multiple
treatments

I Is one of these designs better than the other?

I A within-subjects design can suffer from order effects: the order the
subjects do the treatments in can matter

I However, a within-subjects design needs less subjects and gives more
control of subject characteristics
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Incentives

I Choices in experiments are typically incentivized with some kind of
material incentive or payoff

I Incentives may be cash, consumption goods, social image
I Important to calibrate the size of the stakes to the task
I Eg, bad idea to only pay a few cents for correctly solving an entire

crossword puzzle

I In some cases, hypothetical stakes may be appropriate
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Context

I Generally want to avoid contexts that include unncessary
complications or distractions for subjects

I For example, consider food choice experiment
I Primarily interested in testing the law of demand
I Avoid confounds such as making decisions publicly observable
I Unless, of course, this is the treatment variable I’m interested in
I Controlling context is easier in lab experiments than field experiments

I Related issue: experimenter demand effect
I Subjects may be influenced by what they think the experimenter wants

them to do
I Avoid using language that implies a value judgement or normative

choice
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Independence

I A famous (likely apocryphal) story:
I Graduate student is studying how fast lacerations heal on the skin of

mice, depending on whether or not mice have a certain genetic
mutation

I Advisor tells graduate student he should double his sample size for
increased statistical power

I Doubling the number of mice is very expensive and time-consuming
I Graduate student is very clever: makes a second laceration on each

mouse

I Has the number of observations doubled?

I Not really: the two cuts on each mouse are probably not independent
from another

I For example, if one cut heals quickly, I can expect the other cut will
heal quickly too

I Thus the second cut does not add new information
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Pitfalls of Experiment Design

I Changing two treatment variables at the same time

I Poor choice of context

I Order effects not considered

I Observations not fully independent

I Poor choice of incentives and stakes
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