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Borrowing from Psychology
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Psychology and Economics

» Behavioral and experimental economics owe much to the psychology
literature
» Many of the foundation papers we will read in each section are from
major branches of psychology:
» social psychology
> cognitive psychology
> judgement and decision-making
» Many groundbreaking researchers in behavioral economics were
trained as psychologists:
» Amos Tversky, PhD in Cognitive Psychology
» Daniel Kahneman, PhD in Psychology
» Dan Arielly, PhD in Cognitive Psychology
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Discussion Questions

» What ideas and concepts are shared between psychology and
economics? Do they have the same names or different?
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Discussion Questions

» What ideas and concepts are shared between psychology and
economics? Do they have the same names or different?

» What methods to the two areas share? What methods are distinct?

» How is theory in economics different than theory in psychology?
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Two Systems Model

» System 1: fast, associative

» Make connections from similarity

» Processing occurs automatically

» Good at: pattern completion, emotional reactions, repetitive tasks
» System 2: slow, deliberative

» Uses symbols and rules

» Processing occurs with conscious awareness

» Good at one-shot learning, formal logic, educational knowledge,

abstract theories

» May interact alternatively or simultaneously

v

Moderated by mood, energy level, difficulty of problem, type of
judgement
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Probability
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Why Do We Need Probability?

1. Social scientists are interested in making predictions about future
behavior
» Sometimes the best prediction we can give is a likelihood of a certain
event of interest happening
2. We need a benchmark to talk about rationality of behavior
» Probability judgement: Process of assigning a number to an event that
represents one's strength of belief that that event will occur
» The rules of probability come from very general assumptions but still
give powerful restrictions on how probability judgement should behave



Probability Basics

> Let © be the space of all possible outcomes
» Eg if we are rolling a single die, Q = {1,2,3,4,5,6}
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Axioms of Probability

» An axiom is a mathematical rule that is assumed to be true

» We have just two axioms in probability theory:
1. PQ)=1
» You can think of this as “something is guaranteed to happen”
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Axioms of Probability

» An axiom is a mathematical rule that is assumed to be true
» We have just two axioms in probability theory:
1. PQ)=1
» You can think of this as “something is guaranteed to happen”
» Eg P({1,2,3,4,5,6}) = 1 in dice example
2. P(Aor B) = P(A) + P(B) for any two mutually exclusive events A
and B

» Called the addition axiom
» Eg P({1}) + P({3,4,5,6}) = +5 =2

» These rules may not uniquely determine the probability function for a
given context

» But they do still allow us to make testable predictions about what a
(possibly subjective) probability function should look like
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Where Do These Probabilities Come From?

» Frequentist perspective

» Probabilities represent long run averages

» Eg, dice: P(4) = % because if | roll a die a very large number of times,
1

5 of the time | will roll a 4
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Where Do These Probabilities Come From?

» Frequentist perspective

» Probabilities represent long run averages
» Eg, dice: P(4) = % because if | roll a die a very large number of times,
1

5 of the time | will roll a 4

» Counting perspective
» Break event space into small enough pieces that they are be equally
likely to happen
» Probabilities of more complex events can then be built by addition rule,
since pieces are mut
» Example: what is the probability of flipping two heads in a row?
> Break down into 4 equally likely events: HH, HT, TH, TT
> Only 1 of these has two heads, so P(HH) = }
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Conditional Probabilities

» We can define conditional probability P(A|B) = %

» This is the probability of A occurring given that we know B has
occurred.

» Example: P(winter) = 3 but P(winter | snowed last weekend) > 1
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Conditional Probabilities

» We can define conditional probability P(A|B) = %

» This is the probability of A occurring given that we know B has
occurred.

» Example: P(winter) = 3 but P(winter | snowed last weekend) > 1
» We say two events A and B are independent if P(A|B) = P(A)

» Dice example: Probability of rolling a six is independent of what you
rolled previously

» Multiplication rule: For any two events A and B then
P(A and B) = P(A|B)P(B)
» Comes from rearranging definition of conditional probability
> Note that if A and B are independent, P(A and B) = P(A)P(B)
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Bayes' Rule: Intuition

» Suppose you have the following information:

» The baseline breast cancer rate in women is 10%

> If a patient has breast caner, a mammogram will return positive with
90% probability

> If a patient does not have breast cancer, a mammogram will return
positive with 20% probability
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Bayes' Rule: Intuition

» Suppose you have the following information:
» The baseline breast cancer rate in women is 10%
> If a patient has breast caner, a mammogram will return positive with
90% probability
> If a patient does not have breast cancer, a mammogram will return
positive with 20% probability
» Question: What is the probability that a patient has cancer given that
you see a positive mammogram result?
» Consider 100 women, all of whom we test for breast cancer
» 10 will have cancer (from the baseline rate)
> Of these, 9 will return positive, 1 will return negative
90 will not have cancer
> Of these 72 (90 x 0.8) will return negative, 18 will return positive

v

» So among the positive tests, only % = % are true positives for cancer
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Bayes' Rule: Formalization

» Suppose we are considering two events A; and B
» From the definition of conditional probability, we have

» P(A|B) = 7”(%‘;(‘2;’ B)
P(B and A P(A; and B
» P(BlA1) = (P(Al) ) = (F1>(A1) :
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Bayes' Rule: Formalization

v

Suppose we are considering two events A; and B

» From the definition of conditional probability, we have
» P(A|B) = 7”(%‘;(‘2;’ B)
» P(B|A1) = P(BP?E\T)AO = P(Aﬁ(i\nlc)i 2
» Substituting one into the other:
P(B|A1)P(A1)
P(A1|B) = ——————*

v

This is the most basic statement of Bayes' rule
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Bayes' Rule: Alternate Formulations

» That P(B) on the bottom is not very useful
» Suppose A, is the even that A; does not happen, ie A + A» = Q
» Then

P(B) = P(B and A1) + P(B and Ay)
= P(B|A1)P(A1) + P(B|A2)P(Ay)

v

This give us a more useful version of Bayes' rule:

P(B|A1)P(A1)
(B|A1)P(A1) + P(B|A2)P(A2)

P(A1|B) = 2
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» That P(B) on the bottom is not very useful
» Suppose A, is the even that A; does not happen, ie A + A» = Q
» Then

P(B) = P(B and A1) + P(B and Ay)
= P(B|A1)P(A1) + P(B|A2)P(Ay)

v

This give us a more useful version of Bayes' rule:

P(B|A1)P(A1)
(B|A1)P(A1) + P(B|A2)P(A2)

P(A1|B) = 2

» Or more generally:

_ P(BIA)P(A)
PIAIB) = 5 b(81A) P(A)
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Experimental Design
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Why Do We Need Experiments?

» Suppose we observe the following pattern in observational data:

Risk of
cancer

Number of cigarette
lightersin household

» Can we conclude that cigarette lighters cause cancer?
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Why Do We Need Experiments?

» Suppose we observe the following pattern in observational data:

Risk of
cancer

Number of cigarette
lightersin household

» Can we conclude that cigarette lighters cause cancer?
» No, correlation is not causation

> More likely that there is a third variable (smoking) that causes the
other two
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Experiments Give Us Control

» Experiments allow the researcher to control all the variables (or at
least control them more than in observational data)
» Experiments also the researcher to determine causality using random
assignment
» For example, if we randomly gave some people more cigarette lighters
to have around the house, we would probably see that they have no
causal relationship with cancer risk

Risk of
cancer

Number of cigarette
lighters in household
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Building Blocks

» Every experiment needs some participants, also know as subjects or
decision-makers

» The most basic unit in an experiment is a task or choice
» For example, deciding whether or not to buy a food item

A treatment is a series of one or more similar tasks

» For example, choosing whether or not to buy many food items, one at
a time

v

» An experiment consists of one or more treatments

» For example, could have one treatment where all food items are 25
cents, and another where all food items are at 75 cents
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Treatment Variables

» Many experiment consist on only one treament
» But many others have more than one treatment

» The parts that differ between the treatments are called treatment
variables

» A common experimental design is to have two treatment variables
that can each take on two levels
» This is called a 2-by-2 design
» Example:
» We are interested in responses to requests for donations to the local
animal shelter

> Vary whether picture of a dog is included, and vary whether a specific
amount of money is asked for

Amount Specified | Amount Not Specified
Photo Treatment A Treatment B
No Photo Treatment C Treatment D
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Within- vs Between-Subjects Design

» In a between-subjects design, each subject completes only one
treatment
» In a within-subjects design, each subject completes multiple

treatments
> Is one of these designs better than the other?
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Within- vs Between-Subjects Design

» In a between-subjects design, each subject completes only one
treatment
» In a within-subjects design, each subject completes multiple
treatments
> Is one of these designs better than the other?
» A within-subjects design can suffer from order effects: the order the
subjects do the treatments in can matter
» However, a within-subjects design needs less subjects and gives more
control of subject characteristics
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Incentives

» Choices in experiments are typically incentivized with some kind of
material incentive or payoff
> Incentives may be cash, consumption goods, social image
» Important to calibrate the size of the stakes to the task
» Eg, bad idea to only pay a few cents for correctly solving an entire
crossword puzzle

» In some cases, hypothetical stakes may be appropriate

36
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Context

» Generally want to avoid contexts that include unncessary
complications or distractions for subjects
» For example, consider food choice experiment

» Primarily interested in testing the law of demand
» Avoid confounds such as making decisions publicly observable
> Unless, of course, this is the treatment variable I'm interested in
» Controlling context is easier in lab experiments than field experiments
» Related issue: experimenter demand effect
» Subjects may be influenced by what they think the experimenter wants
them to do

» Avoid using language that implies a value judgement or normative
choice
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Independence

» A famous (likely apocryphal) story:

» Graduate student is studying how fast lacerations heal on the skin of
mice, depending on whether or not mice have a certain genetic
mutation

» Advisor tells graduate student he should double his sample size for
increased statistical power

» Doubling the number of mice is very expensive and time-consuming

» Graduate student is very clever: makes a second laceration on each
mouse

» Has the number of observations doubled?
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Independence

» A famous (likely apocryphal) story:

» Graduate student is studying how fast lacerations heal on the skin of
mice, depending on whether or not mice have a certain genetic
mutation

» Advisor tells graduate student he should double his sample size for
increased statistical power

» Doubling the number of mice is very expensive and time-consuming

» Graduate student is very clever: makes a second laceration on each
mouse

» Has the number of observations doubled?

» Not really: the two cuts on each mouse are probably not independent
from another

» For example, if one cut heals quickly, | can expect the other cut will
heal quickly too

» Thus the second cut does not add new information
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Pitfalls of Experiment Design

v

Changing two treatment variables at the same time

v

Poor choice of context

v

Order effects not considered

v

Observations not fully independent

Poor choice of incentives and stakes

v
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